User Modelling for Exclusion and Anomaly Detection: A Behavioural Intrusion Detection System
نویسندگان
چکیده
User models are generally created to personalise information or share user experiences among like-minded individuals. An individual’s characteristics are compared to those of some canonical user type, and the user included in various user groups accordingly. Those user groups might be defined according to academic ability or recreational interests, but the aim is to include the user in relevant groups where appropriate. The user model described here operates on the principle of exclusion, not inclusion, and its purpose is to detect atypical behaviour, seeing if a user falls outside a category, rather than inside one. That is, it performs anomaly detection against either an individual user model or a typical user model. Such a principle can be usefully applied in many ways, such as early detection of illness, or discovering students with learning issues. In this paper, we apply the anomaly detection principle to the detection of intruders on a computer system masquerading as real users, by comparing the behaviour of the intruder with the expected behaviour of the user as characterised by their user model. This behaviour is captured in characteristics such as typing habits, Web page usage and application usage. An experimental intrusion detection system (IDS) was built with user models reflecting these characteristics, and it was found that comparison with a small number of key characteristics from a user model can very quickly detect anomalies and thus identify an intruder.
منابع مشابه
A hybrid approach for database intrusion detection at transaction and inter-transaction levels
Nowadays, information plays an important role in organizations. Sensitive information is often stored in databases. Traditional mechanisms such as encryption, access control, and authentication cannot provide a high level of confidence. Therefore, the existence of Intrusion Detection Systems in databases is necessary. In this paper, we propose an intrusion detection system for detecting attacks...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملA Survey of Anomaly Detection Approaches in Internet of Things
Internet of Things is an ever-growing network of heterogeneous and constraint nodes which are connected to each other and the Internet. Security plays an important role in such networks. Experience has proved that encryption and authentication are not enough for the security of networks and an Intrusion Detection System is required to detect and to prevent attacks from malicious nodes. In this ...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010